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Abstract. In this paper we prove a perturbation result for a new type of eigenvalue problem intro-
duced by D. Motreanu and P.D. Panagiotopoulos (1998). The perturbation is made in the nonsmooth
and nonconvex term of a double eigenvalue problem on a spherlike type manifold considered in
‘Multiple solutions for a double eigenvalue hemivariational inequality on a spherelike type manifold’
(to appear inNonlinear Analysis). For our aim we use some techniques related to the Lusternik-
Schnirelman theory (including Krasnoselski’s genus) and results proved by J.N. Corvellec et al.
(1993), M. Degiovanni and S. Lancelotti (1995), and V.D. Rădulescu and P.D. Panagiotopoulos
(1998). We apply these results in the study of some problems arising in Nonsmooth Mechanics.
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1. Introduction

The mathematical theory of hemivariational inequalities and their applications in
mechanics, engineering or economics, were introduced and developed by P.D.
Panagiotopoulos [17-23]. This theory may be considered as an extension of the
theory of variational inequalities studied by G. Fichera [6], J.L. Lions and G.
Stampacchia [8]. However, Hemivariational Inequalities are much more general,
in the sense that they are not equivalent to minimum problems, but give rise to
substationarity problems.

In this paper we deal with a new type of eigenvalue problem for hemivari-
ational inequalities, called ‘double eigenvalue problems’ which were introduced
by D. Motreanu and P.D. Panagiotopoulos [9]. By M.F. Bocea, D. Motreanu and
P.D. Pangiotopoulos [1] it is proved a multiplicity result concerning the solutions
belonging to a spherelike type manifold. Our aim is to study the effect induced
by an arbitrary perturbation made in the nonsmooth and nonconvex term of the
symmetric hemivariational inequality considered in [1].
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2. The abstract framework

Let V be a real Hilbert space, with the scalar product and the associated norm
denoted by(·, ·)V and‖ · ‖V , respectively. We shall suppose thatV is densely and
compactly embedded inLp(�;RN) for somep > 2, whereN > 1 and �⊂
Rm,m > 1, is a smooth, bounded domain. Throughout in this paper, we shall
denote by〈·, ·〉V and〈·, ·〉 the duality products onV andRN, respectively. Let us
denote byCp(�) the constant of the (continuous, in particular) embeddingV ⊂
Lp(�;RN) which means that

‖v‖Lp 6 Cp(�) · ‖v‖V , for all v ∈ V.
Let a1, a2 : V × V → R be two continuous symmetric bilinear forms onV and let
B1, B2 : V → V be two bounded self-adjoint linear operators which are coercive
in the sense that

(Biv, v)V > bi · ‖v‖2V , for all v ∈ V, i = 1,2,

for some constantsb1, b2 > 0. For fixed positive numbersa, b, r we consider the
submanifoldSa,br of V × V described as follows

Sa,br = {(v1, v2) ∈ V × V : a(B1v1, v1)V + b(B2v2, v2)V = r2}.
We need to consider the tangent space associated to the manifold defined above,
which is

T(u1,u2)S
r
a,b := {(v1, v2) ∈ V × V : a(B1u1, v1)V + b(B2u2, v2)V = 0}.

Let j : �× RN → R satisfy the following assumptions

(i) j (·, y) is measurable in� for eachy ∈ RN andj (·,0) is essentially bounded
in �;

(ii) j (x, ·) is locally Lipschitz inRN for a.e.x ∈ �.

Throughout this paper we shall use the notationj0
y for Clarke’s generalized direc-

tional derivative (see [3]) ofj with respect to the second variabley, i.e.,

j0
y (x, y; z) = lim sup

w→y
λ↓0

j (x,w + λz)− j (x,w)
λ

,

with x ∈ �, y, z ∈ RN andλ ∈ R. Accordingly, Clarke’s generalized gradient
∂yj (x, y) of the locally Lipschitz mapj (x, ·) is defined by

∂yj (x, y) = {ξ ∈ RN : 〈ξ, z〉 6 j0
y (x, y; z), ∀z ∈ RN }.

As Rădulescu and Panagiotopoulos observed in [24], we may request thatj satis-
fies a slight more general growth condition than the classical one (see the hypoth-
esis(H1) in Motreanu and Panagiotopoulos [13])
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(H1) There existθ ∈ L p
(p−1) (�) andρ ∈ R such that

|z| 6 θ(x)+ ρ|y|p−1, (1)

for a.e.(x, y) ∈ �× RN and eachz ∈ ∂yj (x, y).
Let us consider a real functionC : Sa,br × V × V → R to which we impose
no continuity assumption. We are now prepared to consider the following double
eigenvalue problem : Findu1, u2 ∈ V andλ1, λ2 ∈ R such that

(P 1
r,a,b)


a1(u1, v1)+ a2(u2, v2)+ C((u1, u2), v1, v2)+
+ ∫

�
j0
y (x, (u1 − u2)(x); (v1 − v2)(x))dx >

> λ1(B1u1, v1)V + λ2(B2u2, v2)V , ∀ v1, v2 ∈ V,

a(B1u1, u1)V + b(B2u2, u2)V = r2.

We impose the following hypothesis
(H2) There exist two locally Lipschitz mapsfi : V → R, bounded onπi(Sa,br ),

(i = 1,2) respectively, and such that the following inequality holds

C((u1, u2), v1, v2) > f 0
1 (u1; v1)+ f 0

2 (u2; v2), (2)

∀ (u1, u2) ∈ Sa,br and∀ (v1, v2) ∈ T(u1,u2)S
a,b
r .

In addition we suppose that the sets

{z ∈ V ∗ : z ∈ ∂fi(ui), ui ∈ πi(Sa,br )}
are relatively compact inV ∗, for i = 1,2.
Define the map(A1, A2) : V × V → V ∗ × V ∗ by the relation

〈(A1, A2)(u1, u2), (v1, v2)〉V×V = a1(u1, v1)+ a2(u2, v2) (3)

and the duality map3 : V × V → V ∗ × V ∗ given by

〈3(u1, u2), (v1, v2)〉V×V = a(B1u1, v1)V + b(B2u2, v2)V . (4)

We also assume
(H3) For every sequence{(u1

n, u
2
n)} ⊂ Sa,br with uin ⇀ ui weakly inV, for any

zin ∈ ∂fi(uin), with

ai(u
i
n, u

i
n)+ 〈zin, uin〉V → αi ∈ R, (5)

i = 1,2, and for allw ∈ L p
p−1 (�;RN) which satisfies the relation

w(x) ∈ ∂yj (x, (u1 − u2)(x)) for a.e. x ∈ �, (6)

such that

[(A1, A2)− λ0 ·3] (u1
n, u

2
n)
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converges inV ∗ × V ∗, where

λ0 = r−2(α1+ α2+
∫
�

〈w(x), (u1 − u2)(x)〉 dx), (7)

there exists a convergent subsequence of(u1
n, u

2
n) in V × V (thus, inSa,br ).

(H4) j is even with respect to the second variable, i.e.,

j (x,−y) = j (x, y), for a.e. x ∈ �, and anyy ∈ RN,

andfi is even onπi(Sa,br ) i.e.,

fi(−ui) = fi(ui), for all (u1, u2) ∈ Sa,br , i = 1,2.

By assuming the hypotheses(H1), (H2), (H3) and (H4), it is proved in [1] that
the double eigenvalue problem(P 1

r,a,b) admits infinitely many pairs of solutions
{±(u1

n, u
2
n), (λ

1
n, λ

2
n)} ⊂ Sa,br × R2. Moreover, it is found the expression of the

eigenvaluesλ1
n andλ2

n. The aim of this paper is to answer a natural question: what
happens if we perturb(P 1

r,a,b) in a suitable manner? For proving our main result
we need some notions of Algebraic Topology which may be found in Spanier [26].
We recall now only some basic definitions.

Let X be a metric space andA ⊂ X. We said that a mapr : X → A is a
retractionif it is continuous, surjective and fulfillsr|A = Id.A retractionr is called
to be astrong deformation retractionif there exists a homotopyF : X×[0,1] → X

of i ◦ r andIdX such thatF(x, t) = F(x,0), for each(x, t) ∈ A × [0,1]. Herei
stands for the inclusion map ofA inX.We callX to beweakly locally contractible,
if every point has a contractible neighbourhood inX. Let ξ : X → R be a locally
Lipschitz functional. Set, for everya ∈ R

[ξ 6 a] := {u ∈ X; ξ(u) 6 a}.

Let us fixa, b ∈ R with a 6 b. The pair([ξ 6 b], [ξ 6 a]) is calledtrivial if, for
every neighbourhoods[a′ , a′′ ] of a and[b′, b′′ ] of b, there exist some closed setsA
andB such that[ξ 6 a

′ ] ⊂ A ⊂ [ξ 6 a
′′ ], [ξ 6 b

′ ] ⊂ B ⊂ [ξ 6 b′′ ] and such
thatA is a strong deformation retract ofB.

The next notion is essentialy due to M. Degiovanni and S. Lancelotti [5].
A real numberc is said to be anessential valueof ξ if, for every ε > 0, there

exista, b ∈ (c − ε, c + ε), with a < b and such that the pair([ξ 6 b], [ξ 6 a]) is
not trivial.

Let us consider an arbitrary elementφ in V ∗ andg : �×RN → R a Caratheo-
dory function which is locally Lipschitz with respect to the second variable and
such thatg(·,0) ∈ L1(�). Let us consider the following non-symmetric perturbed
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double eigenvalue problem: find(u1, u2) ∈ V × V and(λ1, λ2) ∈ R2 such that

(P 2
r,a,b)



a1(u1, v1)+ a2(u2, v2)+ C((u1, u2), v1, v2)+
+ ∫

�
{j0
y (x, (u1 − u2)(x); (v1 − v2)(x))+

g0
y(x, (u1 − u2)(x); (v1 − v2)(x))}dx+
+ < φ, v1 >V + < φ, v2 >V>
> λ1(B1u1, v1)V + λ2(B2u2, v2)V , ∀ v1, v2 ∈ V,

a(B1u1, u1)V + b(B2u2, u2)V = r2.

Fix δ > 0. We impose tog the growth condition
(H5) There existθ1 ∈ L

p
(p−1) (�) andδ > 0 such that

|z| 6 θ1(x)+ δ|y|p−1, (8)

for a.e.(x, y) ∈ �× RN and eachz ∈ ∂yg(x, y).
Let us denote byJ andG the (locally Lipschitz, by hypotheses(H1) and(H5) )
functionals fromLp(�;RN) into R, defined by

J (u) =
∫
�

j (x, u(x))dx and G(u) =
∫
�

g(x, u(x))dx.

We associate to the problems(P 1
r,a,b) and(P 2

r,a,b) the energy functionsI1, I2 : V ×
V → R, defined by

I1(u1, u2) =1

2
· [a1(u1, u1)+ a2(u2, u2)] + (9)

+ f1(u1)+ f2(u2)+ J (u1− u2),

and

I2(u1, u2) = I1(u1, u2)+G(u1 − u2)+ 〈φ, u1〉V + 〈φ, u2〉V , (10)

for all u1, u2 ∈ V.
We denote byϒ the family of closed and symmetric with respect to the origin

0V×V , subsets ofSa,br . Let us denote, as usually, byγ (S) the Krasnoselski’s genus
of the setS ∈ ϒ, that is, the smallest integerk ∈ N ∪ {+∞} for which there exists
an odd continuous mapping fromS into Rk\{0}. For everyn > 1, set

0n = {S ⊂ Sa,br : S ∈ ϒ, γ (S) > n}
Recall that the corresponding minimax values ofI1 over0n

βn = inf
S⊂0n

sup
(u1,u2)∈S

{I1(u1, u2)},

are critical values ofI1 onSa,br (see [1, Theorem 1]).

3. Preliminary results

The first result of this section concerns the functionalI1.
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LEMMA 1. Lets := sup
(u1,u2)∈Sa,br {I1(u1, u2)}. Then the supremum is not achieved

and limn→∞ βn = s. Moreover, there exists a sequence(bn) of essential values of
the restriction ofI1 at Sa,br , strictly increasing tos.

Proof.This result is essentially proved in [24] (see Lemma 1) by using the ideas
of M. Degiovanni and S. Lancelotti (see [5], Theorem 2.12). The only difference
is that now, we work not on a sphere but on the Riemannian manifoldSa,br . It is
sufficient to point out that this is a weakly locally contractible space as the usual
sphere inV is, and the fact thatI1 satisfies the Palais-Smale condition onSa,br as
was proved in [1]. With these remarks, the proof of the Lemma 1 follows the same
steps with the one in [24]. 2

For continuing, we need two aditional assumptions
(H6) The following inequalities hold

‖θ1‖
L

p
p−1
6 δ, ‖g(·,0)‖L1 6 δ and‖φ‖V ∗ 6 δ. (11)

The second assumption is actually a variant of the compactness hypothesis(H3)

(H7) For every sequence{(u1
n, u

2
n)} ⊂ Sa,br with uin ⇀ ui weakly inV, for any

zin ∈ ∂fi(uin), with

ai(u
i
n, u

i
n)+

〈
zin, u

i
n

〉
V
+ < φ, uin >V→ αi ∈ R, (12)

i = 1,2 and for allw, z ∈ L p
p−1 (�;RN) which satisfies the relations

w(x) ∈ ∂yj (x, (u1 − u2)(x)), (13)

z(x) ∈ ∂yg(x, (u1 − u2)(x)), for a.e. x ∈ �,
such that

[(A1, A2)− λ0 ·3] (u1
n, u

2
n)

converges inV ∗ × V ∗, where,

λ0 = r−2(α1+ α2+
∫
�

〈w(x)+ z(x), (u1 − u2)(x)〉 dx), (14)

there exists a convergent subsequence of(u1
n, u

2
n) in V × V.

The next result proves that ifδ > 0 is sufficiently small in the hypotheses(H5)

and(H6), thenI2 is a small perturbation ofI1 onSa,br .

LEMMA 2. For everyε > 0, there existsδ0 > 0 such that, for allδ 6 δ0 we have

sup
(u1,u2)∈Sa,br

|I1(u1, u2)− I2(u1, u2)| < ε.
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Proof.By using mainly the Lebourg’s mean value theorem for locally Lipschitz
functionals (see [3]) and the hypothesis(H5) we find

|G(u)| 6 ‖g(·,0)‖L1 + ‖θ1‖
L

p
p−1
· ‖u‖Lp + δ‖u‖pLp .

Taking into account the hypothesis(H6) and the fact that(u1, u2) ∈ Sa,br we derive
that

|I1(u1, u2)− I2(u1, u2)| =|G(u1− u2)+ < φ, u1 >V + < φ, u2 >V | 6
6‖g(·,0)‖L1 + ‖θ1‖

L
p
p−1
· Cp(�) · r

·
(

1√
ab1
+ 1√

bb2

)
+ δ · Cpp(�)

· rp
(

1√
ab1
+ 1√

bb2

)p
+ δ · r

·
(

1√
ab1
+ 1√

bb2

)
< ε,

for δ > 0 small enough. 2
LEMMA 3. The functionalI2 satisfies the Palais-Smale condition onSa,br .

Proof. For the beginning it is important to remark that the expression of the
generalized gradient∂(I2|Sa,br ) at the point(u1, u2) ∈ Sa,br is given by the formula

∂(I2|Sa,br )(u1, u2) = {ξ − r−2〈ξ, (u1, u2)〉V×V ·3(u1, u2) : ξ ∈ ∂I2(u1, u2)},
where3 : V × V → V ∗ × V ∗ is the appropriate duality map given in (4). Here,
the duality〈·, ·〉V×V is taken for the norm

‖(u1, u2)‖V×V :=
√
a(B1u1, u1)V + b(B2u2, u2)V , ∀ u1, u2 ∈ V.

Let us consider a sequence(u1
n, u

2
n) ⊂ Sa,br such that

sup
n

|(I2|Sa,br
)(u1

n, u
2
n)| < +∞

and such that there exists some sequenceJn ⊂ V ∗ × V ∗ fulfilling the conditions

Jn ∈ ∂I2(u
1
n, u

2
n), n > 1

and

Jn − r−2 〈Jn, (u1
n, u

2
n)
〉
V×V ·3(u1

n, u
2
n)→ 0, (15)

strongly inV ∗ × V ∗. For concluding it suffices to prove that{(u1
n, u

2
n)} contains a

convergent subsequence inV × V. Under hypothesis(H1) the functionalsJ and
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G are Lipschitz continuous on bounded sets inLp(�;RN) and their generalized
gradients satisfy (cf. Clarke [3], Theorem 2.7.5)

∂J (v) ⊂
∫
�

∂yj (x, v(x))dx

and

∂G(v) ⊂
∫
�

∂yg(x, v(x))dx, ∀ v ∈ Lp(�;RN).

The density ofV into Lp(�;RN) allows us to apply Theorem 2.2 of Chang [2].
Thus, we obtain

∂(J|V )(v) ⊂ ∂J (v),
and

∂(G|V )(v) ⊂ ∂G(v), ∀ v ∈ V.
FromJn ∈ ∂I2(u

1
n, u

2
n) we derive that there existszin ∈ ∂fi(uin)(i = 1,2), wn ∈

∂(J|V )(u1
n − u2

n) andzn ∈ ∂(G|V )(u1
n − u2

n) such that

Jn = (a1(u
1
n, ·)+ z1

n + φ, a2(u
2
n, ·)+ z2

n + φ)+K∗(wn)+K∗(zn),
whereK : V × V → V is the map given by

K(v1, v2) = v1− v2.

By the above considerations we have that

wn(x) ∈ ∂yj (x, (u1
n − u2

n)(x))

and

zn(x) ∈ ∂yg(x, (u1
n − u2

n)(x)), for a.e. x ∈ �.
By the relation (15) we get(

a1(u
1
n, ·)+ z1

n + φ, a2(u
2
n, ·)+ z2

n + φ
)+K∗(wn)+K∗(zn)−

− r−2〈[(a1(u
1
n, ·)+ z1

n + φ, a2(u
2
n, ·)+ z2

n + φ)+K∗(wn)+K∗(zn)],

(u1
n, u

2
n)〉V×V ·3(u1

n, u
2
n)→ 0, strongly inV ∗ × V ∗.

Since the sequence(u1
n, u

2
n) is contained inSa,br and by the coercivity property of

B1 andB2 it follows that each sequence(u1
n) and(u2

n) is bounded inV. So, up to a
subsequence, we may conclude that

uin ⇀ ui, weakly inV, for someui ∈ V, (i = 1,2).
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The compactness assumptions in the hypothesis(H2) implies that, again up to a
subsequence,

zin→ zi, strongly inV ∗, for somezi ∈ V ∗ (i = 1,2).

Also we have

wn ∈ ∂(J|V )(u1
n − u2

n) ⊂ ∂J (u1
n − u2

n),
(16)

zn ∈ ∂(G|V )(u1
n − u2

n) ⊂ ∂G(u1
n − u2

n).

The compactness of the embeddingV ⊂ Lp(�;RN) provides the convergences

uin→ ui, strongly inLp(�;RN), (i = 1,2). (17)

SinceJ andG are locally Lipschitz onLp(�;RN), the above property ensures that
(wn) and (zn) are bounded inL

p
p−1 (�;RN). By the reflexivity ofL

p
p−1 (�;RN)

and the compactness of the embeddingL
p
p−1 (�;RN) ⊂ V ∗, there existw, z ∈

L
p
p−1 (�;RN) such that, up to a subsequence,

wn→ w strongly inV ∗ and weakly inL
p
p−1 (�;RN)

and

zn→ z strongly inV ∗ and weakly inL
p
p−1 (�;RN).

Proposition 2.1.5 in Clarke [3] and the relations (16) and (17) yield

w ∈ ∂J (u1− u2), (18)

z ∈ ∂G(u1− u2).

With the above remarks we may suppose that

ai(u
i
n, u

i
n) converges inR, i = 1,2,

and 〈[
(z1
n + φ, z2

n + φ)+K∗(wn)+K∗(zn)
]
, (u1

n, u
2
n)
〉
V×V

possesses a convergent subsequence inR . From (15) and taking into account the
convergences stated above we derive that(

a1(u
1
n, ·), a2(u

2
n, ·)

)− λ0 ·3(u1
n, u

2
n),

converges strongly inV ∗×V ∗,whereλ0 is the one required in(H7).So, hypothesis
(H7) allows us to conclude that(u1

n, u
2
n) has a convergent subsequence inV × V,

so inSa,br . Thus the Palais-Smale condition for the functionalI2 onSa,br is satisfied
and the proof is now complete. 2
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LEMMA 4. If u = (u1, u2) is a critical point of I2|Sa,br
then there exists a pair

(λ1, λ2) ⊂ R2 such that((u1, u2), (λ1, λ2)) is a solution of the problem(P 2
r,a,b).

Proof.Sinceu is a critical point forI2|Sa,br
, it follows that

0V×V ∈
(
∂I2|Sa,br

)
(u1, u2) (19)

Taking into account the expression of the generalized gradient of the restriction of
I2 atSa,br , we may conclude the existence of an elementξ ∈ ∂I2(u1, u2) such that

ξ − r−2 〈ξ, (u1, u2)〉V×V ·3(u1, u2) = 0 (20)

By the Clarke’s calculus and the inclusions stated in the proof of Lemma 3 we
derive

∂I2(u1, u2)(v1, v2) ⊂ a1(u1, v1)+
+ a2(u2, v2)+ ∂f1(u1)v1+ ∂f2(u2)v2

+
∫
�

∂yj (x, (u1 − u2)(x))(v1 − v2)(x)dx +

+
∫
�

∂yg(x, (u1 − u2)(x))(v1− v2)(x)dx

+ < φ, v1 >V + < φ, v2 >V ,

for all v1, v2 ∈ V. So, there exists somezi ∈ ∂fi(ui) (i = 1,2) andw, z ∈
L

p
p−1 (�;RN) with

w(x) ∈ ∂yj (x, (u1 − u2)(x)) for a.e. x ∈ �,

and

z(x) ∈ ∂yg(x, (u1 − u2)(x)) for a.e. x ∈ �,

such that

〈ξ, (v1, v2)〉V×V = a1(u1, v1)+ a2(u2, v2)+ < z1, v1 >V

+ < z2, v2 >V +
∫
�

< w(x), (v1 − v2)(x) > dx

+
∫
�

< z(x), (v1− v2)(x) > dx

+ < φ, v1 >V + < φ, v2 >V .
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From (20) it follows that

a1(u1, v1)+ a2(u2, v2)+ < z1, v1 >V + < z2, v2 >V

+
∫
�

< w(x), (v1− v2)(x) > dx

+
∫
�

< z(x), (v1− v2)(x) > dx

+ < φ, v1 >V + < φ, v2 >V

− r−2[a1(u1, u1)+ a2(u2, u2)+ < z1, u1 >V + < z2, u2 >V

+
∫
�

< w(x), (u1− u2)(x) > dx

+
∫
�

< z(x), (u1− u2)(x) > dx

+ < φ, u1 >V + < φ, u2 >V ] · (a(B1u1, v1)V

+ b(B2u2, v2)V ) = 0,

for all v1, v2 ∈ V. Set

λ =r−2[a1(u1, u1)+ a2(u2, u2)+ < z1, u1 >V + < z2, u2 >V

+
∫
�

< (w + z)(x), (u1 − u2)(x) > dx+ < φ, u1 >V + < φ, u2 >V ].

Let us now observe that we have∫
�

〈(w + z)(x), (v1 − v2)(x)〉dx

6
∫
�

max{〈µ1, (v1− v2)(x)〉;µ1 ∈ ∂yj (x, (u1 − u2)(x))}

+
∫
�

max{〈µ2, (v1− v2)(x)〉;µ2 ∈ ∂yg(x, (u1 − u2)(x))}

=
∫
�

j0
y (x, (u1 − u2)(x); (v1 − v2)(x))dx

+
∫
�

g0
y(x, (u1 − u2)(x); (v1 − v2)(x))dx.

In the above relation, the last equality holds because of Proposition 2.1.2 in [3].
Taking into account the choice ofzi(i = 1,2), z andw, it is easily to observe that
if we denoteλ1 = λa andλ2 = λb, our hypothesis(H2) and some simple calcu-
lation lead us to the desired conclusion claimed in the formulation of Lemma 4.2
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4. The main result

With the preliminary results stated in Section 3 we are now prepared to prove our
perturbation result.

THEOREM 1. Assume that the hypotheses(H1) − (H7) are fulfilled. Then, for
everyn > 1, there existsδn > 0 such that, for eachδ 6 δn, the problem(P 2

r,a,b)

admits at leastn distinct solutions.
Proof.Fix n > 1. By Lemma 4 it suffices to prove the existence of aδn > 0 such

that, for everyδ 6 δn, the functionalI2|Sa,br
has at leastn distinct critical values.

We may use now the conclusion of Lemma 1 and this implies that it is possible
to consider a sequence(bn) of essential values ofI1|Sa,br

, strictly increasing tos.

Choose an arbitraryε0 <
1
2 min16i6n−1(bi+1 − bi). We now apply Theorem 2.6

from [5] to the functionalsI1|Sa,br
andI2|Sa,br

. Thus, for every 16 i 6 n − 1, there

existsηi > 0 such that the relation

sup
(u1,u2)∈Sa,br

|I1(u1, u2)− I2(u1, u2)| < ηi

implies the existence of an essential valueci of I2|Sa,br
in (bi−ε0, bi+ε0). By taking

ε = min{ε0, η1, · · · , ηn−1} in Lemma 2, we derive the existence of aδn > 0 such
that

sup
(u1,u2)∈Sa,br

|I1(u1, u2)− I2(u1, u2)| < ε,

providedδ 6 δn in (H5) and(H6). So, the functionalI2|Sa,br
has at leastn distinct

essential valuesc1, c2, · · · , cn in (−∞, bn+ε). For concluding our proof it suffices
to show thatc1 · · · , cn are critical values ofI2|Sa,br

. The first step is to prove that

there existsε > 0 such thatI2|Sa,br
has no critical value in(ci − ε, ci + ε). Indeed,

if this is not the case, there exists a sequence(dn) of critical values ofI2|Sa,br
with

dn → ci asn → ∞. The fact thatdn are critical values for the restriction ofI2 at
Sa,br implies that for everyn > 1, there exists(u1

n, u
2
n) ∈ Sa,br such that

I2(u
1
n, u

2
n) = dn andλ∗(u1

n, u
2
n) = 0,

whereλ∗ is the lower semicontinuous functional defined by

λ∗(u1, u2) := min{‖(ξ1, ξ2)‖V ∗×V ∗; (ξ1, ξ2) ∈ ∂I2|Sa,br (u1, u2)}.

Thus, passing eventually to a subsequence,(u1
n, u

2
n) → (u1, u2) ∈ Sa,br , strongly

in V × V. The continuity ofI2 and the lower semicontinuity ofλ∗ implies that

I2(u1, u2) = ci andλ∗(u1, u2) = 0,
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which contradicts the initial conditions onci . Let us fixci−ε < a < b < ci+ε. By
Lemma 3,I2 satisfies the Palais-Smale condition onSa,br . So, for every pointe ∈
[a, b], (PS)e holds. We have fulfilled the set of conditions which allow us to apply
the ‘Noncritical Interval Theorem’ due to J.- N. Corvellec, M. Degiovanni and M.
Marzocchi (see Theorem 2.15 in [4]), on the complete metric space

(
Sa,br , d(·, ·)) ,

where byd(·, ·) we have denoted the geodesic distance onSa,br , that is, for every
pointsx, y ∈ Sa,br , d(x, y) is equal to the infimum of the lengths of all paths onSa,br
joining x andy. We obtain that there exists a continuous mapη : Sa,br × [0,1] →
Sa,br such that, for each(u = (u1, u2), t) ∈ Sa,br ×[0,1], are satisfied the conditions

(a) η(u,0) = u,
(b) I2(η(u, t)) 6 I2(u),

(c) I2(u) 6 b H⇒ I2(η(u,1)) 6 a,
(d) I2(u) 6 a H⇒ η(u, t) = u.

By the above conditions, it follows that the map

[I2|Sa,br
6 b] 3 u 7→ η(u,1) ∈ [I2|Sa,br

6 b]

is a retraction. Let us define the map9 : [I2|Sa,br
6 b] × [0,1] → [I2|Sa,br

6 b] by

the relation

9(u, t) = η(u, t).
Since for everyu ∈ [I2|Sa,br

6 b], we have

9(u,0) = u, 9(u,1) = η(u,1),
and for each(u, t) ∈ [I2|Sa,br

6 b] × [0,1], the equality9(u, t) = 9(u,0) holds, it

follows that9 is [I2|Sa,br
6 b]− homotopic to the identity of[I2|Sa,br

6 b]. Thus,9

is a strong deformation retraction which implies that the pair(
[I2|Sa,br

6 b], [I2|Sa,br
6 a]

)
is trivial. With this argument, we get thatci is not an essential value of the restric-
tion of I2 atSa,br . This is the contradiction which concludes our proof. 2

5. Applications

In many problems arising in Mechanics and Engineering the cost or the weight of
the structure may be expressed as a linear function of the norm of the unknown
function. Thus the constraint that we have imposed‖u‖V = r( or, equivalently,
a‖u1‖2 + b‖u2‖2 = r2) means that we have a system with prescribed cost or
weight, or in some cases energy consumption. The stability analysis of such a
system involving nonconvex nonsmooth potential functions (called also nonconvex
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superpotential) leads to the treatment of a double eigenvalue problem for hemivari-
ational inequalities on a spherelike manifold. We begin with two mathematical
examples and then we shall give some applications from Mechanics.

5.1. PERTURBATIONS OF A COUPLED SEMILINEAR POISSON EQUATION

First, we consider the case of the problem(P 1
r,a,b) in whichC ≡ 0, B1 = B2 =

idV , a = b = 1. Moreovera1, a2 are coercive, in the sense that

ai(v, v) > āi‖v‖2V , ∀v ∈ V, i = 1,2,

for some constants̄a1, ā2 > 0 and j : R→ R is the primitive

j (t) =
∫ t

0
ϕ(τ)dτ, t ∈ R,

with ϕ : R → R even, locally bounded, measurable and satisfying the subcritical
growth condition : for some 16 p < 2m

m−2, if m > 3 (16 p < +∞, if m = 1,2),
we have

|ϕ(t)| 6 c1+ c2|t|p−1, ∀t ∈ R.

It is known that

∂j (t) ⊂ [ϕ(t), ϕ(t)], ∀t ∈ R,

where

ϕ(t) = lim
δ→0

essinf{ϕ(s) ; |t − s| < δ}

and

ϕ(t) = lim
δ→0

esssup{ϕ(s) ; |t − s| < δ}

(see [2]). Suppose further the sign condition of Chang [2]

ϕ(t) > 0 if t < 0 andϕ(t) < 0 if t > 0.

Let us consider that the superpotentialj gives rise to a very irregular graph
[ξ, ∂j (ξ)] (i.e. the graph of∂j has many zig - zag etc.). Then we consider the eigen-
value problem(P 2

r,a,b), whereg0
y is appropriately chosen in order to “smoother a

little bit” the graph[ξ, ∂j (ξ)], i.e. the graph[ξ, ∂j (ξ)+ ∂g(ξ)] has a smaller num-
ber of irregularities than the graph[ξ, ∂j (ξ)]. In the present case we may consider
that

∂j (t)+ ∂g(t) ⊂ [ϕ(t)+ ϕ1(t), ϕ(t)+ ϕ1(t)], ∀t ∈ R.
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In fact, we consider

g(t) =
∫ t

0
ϕ1(τ )dτ, t ∈ R,

whereϕ1 : R → R is locally bounded, measurable and satisfies the subcritical
growth condition

|ϕ1(t)| 6 c3+ c4|t|p−1, ∀t ∈ R

Note that we do not need to impose toϕ1 that it is even, as we have assumed onϕ.

Obviously, Theorem 1 applies on every sphere‖v1‖2V +‖v2‖2V = r2 of V ×V, with
a sufficiently smallr > 0. More precisely, for everyn > 1, there existsδn > 0
such that ifc3 andc4 are chosen smaller thanδn, then the perturbed problem(P 2

r,a,b)

admits at leastn distinct solutions.
As a specific example of application of Theorem 1, we consider the coupled

semilinear Poisson equations on a bounded domain� in RN with a smooth bound-
ary ∂� in the double eigenvalue problem

4u1+ λ1u1 ∈ [ϕ(u1(x)− u2(x)), ϕ(u1(x)− u2(x))] for a.e. x ∈ �

4u2+ λ2u2 ∈ [−ϕ(u1(x)− u2(x)),−ϕ(u1(x)− u2(x))] for a.e. x ∈ �

u1 = u2 = 0 on ∂�.

Hereλ1, λ2 ∈ R are the eigenvalues,u1, u2 are the corresponding eigenfunctions
andϕ, ϕ are determined above for the functionϕ : R → R. We chooseV =
H 1

0 (�),

a1(u, v) = a2(u, v) =
∫
�

∇u · ∇vdx, ∀u, v ∈ H 1
0 (�),

(B1u, v)H1
0
= (B2u, v)H1

0
=
∫
�

u · vdx, ∀u, v ∈ H 1
0 (�),

j : R → R being equal to the primitive ofϕ as we considered above and, for
simplicity,C ≡ 0. Notice that each eigensolution of the hemivariational inequality
appearing in the problem(P 1

r,a,b) represents a weak solution of the Dirichlet system
above. Under the growth condition forϕ as above and the assumptions from the
section 2 onj, Theorem 1 in [1] implies the existence of infinitely many double
eigenfunctions(u1

n, u
2
n) ∈ Sa,br , with u1

n, u
2
n ∈ H 1

0 (�) ∩ H 2(�) for the foregoing
Dirichlet problem.

Further, we consider the perturbed eigenvalue problem

4u1+ λ1u1 ∈ [ϕ(u1(x)− u2(x))+ ϕ1(u1(x)− u2(x)),
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ϕ(u1(x)− u2(x))+ ϕ1(u1(x)− u2(x))] for a.e. x ∈ �

4u2+ λ2u2 ∈ [−ϕ(u1(x)− u2(x))+ ϕ1(u1(x)− u2(x)),

−ϕ(u1(x)− u2(x))+ ϕ1(u1(x)− u2(x))] for a.e. x ∈ �

u1 = u2 = 0 on ∂�,

whereϕ1 is chosen as in the previous example and satisfies the conditions therein.
Then, our Theorem 1 applies and we obtain that the perturbed Dirichlet problem
considered above admits infinitely many distinct solutions. Notice thatc3 andc4

must be sufficiently small, in the same sense as in the first case considered in this
section.

5.2. ADHESIVELY CONNECTED VON KÁRMÁN PLATES: BUCKLING FOR GIVEN

COST OR WEIGHT

In the framework of the theory of elastic von Kármán plates, i.e. of plates having
large deflections, we consider two or more such plates connected with an adhesive
material. The behaviour of the adhesive material may be described by a relation of
the form

−f ∈ ∂j (u1− u2), (21)

(cf. Panagiotopoulos [22], p. 109).The graph of{f, u1−u2}may be a zig-zag graph
with complete vertical branches in the most general case. Concerning the derivation
and study of the corresponding hemivariational inequalities we refer to [16], [22].
We assume that we have two plates�1 and�2,�i ⊂ R2, i = 1,2, which are
adhesively connected on�

′ ⊂ �i, i = 1,2. The plates have the boundaries01

and02 respectively and� ∩ 0i = ∅, i = 1,2. The boundaries are assumed to
be Lipschitzian and are not subjected to any loading on�1 and�2 vertical to the
middle plate plane or parallel to it. We assume that�1 ≡ �2 as subsets ofR2

and we denote both�1 and�2 by �. The plates are only subjected along their
boundaries01 and02 to continuously distributed compressive forces, i.e.

σαβinαi = λigαi α, β = 1,2, i = 1,2,

whereσ = {σαβ} denotes the stress tensor for the in-plane action of the plate,
n = {nα} is the outher unit normal vector to01 or to02, gi = {g1i , g2i } is a given
force distribution, which is self equilibrated, i.e. for each plate∫

0i

gαi ds = 0,
∫
0i

(x1g2i − g1i x2)ds = 0, i = 1,2.
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Hereλi, i = 1,2, is a real number which measures the magnitude of the compres-
sive forces having the directiongi, i = 1,2, along the boundaries of the plates.
These compressive forces may cause buckling of the composite plate with partial
debonding of the adhesive material. As in [15], p. 455 and in [21] p. 234, where the
analogous buckling problem for variational inequalities is formulated, the notion of
‘reduced variational solution’ is introduced and we obtain the following eigenvalue
problem: Findu1, u2 ∈ V andλ1, λ2 ∈ R such that

a1(u1, v1)+ a2(u2, v2)+ (C1(u1), v1)V + (C2(u2), v2)V

+
∫
�

j0
y (x, (u1 − u2)(x); (v1 − v2)(x))dx

> λ1 (B1u1, v1)V + λ2 (B2u2, v2)V ,

for all v1, v2 ∈ V. HereV is the real Sobolev spaceH 2(�) with inner product
(·, ·)V , ai(ui, vi) is the bending energy of the platei, (Ci(ui), vi) , with Ci(·) a
nonlinear compact operator, is the bending energy of the platei due to the stretch-
ing of the same plate,j0(x, u1 − u2; v1 − v2) denotes the directional derivative in
the sense of Clarke at the state(u1− u2)(x) and in the direction(v1− v2)(x) atx,
and(Biui, vi) is given by the relation (7.2.13) of [21], i.e.

(Biui, vi) = − >
∫
�i

hiσ
0
αβi
ui,αvi,βdx ∀ ui, vi ∈ V,

for i = 1,2. Herehi denotes the thickness of the platei andαβ0
i the stress

field in the plane of the platei caused by the forcesgαi (α, β = 1,2, i = 1,2).
Moreover we note that on0i, concerning the plate bending, boundary conditions
which guarantee the coercivity of the bilinear formsai(·, ·), i = 1,2, are assumed
to hold. For instance the built-in boundary conditionsui = ∂ui

∂n
= 0, i = 1,2, or

the simple support boundary conditionsui = 0,Mi(ui) = 0, i = 1,2, whereMi

denotes the bending element of thei−th plate. Further we shall not need for the
operatorsBi the property that(Biui, vi) > 0 ∀ ui ∈ V, ui 6= 0, as it is the case in
the corresponding theory (see Naumann and Wenk [15] ) of eigenvalue problems
for variational inequalities but the stronger property of coercivity (this property is
a consequence of the assumption that the stress vector on the boundary of each
subdomain�0i of �, i = 1,2, is directed outside of�0i , i.e. that each subdomain
of the plate is subjected to compressive forces, (cf. Naumann and Wenk [15], p.
457)). Further we express the total cost or weight of the structure by the form∑2

i=1 ai (Biui, vi) = r2, whereai are given positive constants. We get that for
the arising double eigenvalue problem for hemivariational inequalities(P 1

r,a,b) the
hypotheses are satisfied and the multiplicity result of Theorem 1 in [1] holds.
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5.2.1. Perturbations of the buckling problem of a sandwich beam of prescribed
weight

Let us now consider the perturbed hemivariational inequality : Findu1, u2 ∈ V and
λ1, λ2 ∈ R such that

a1(u1, v1)+ a2(u2, v2)+ (C1(u1), v1)V + (C2(u2), v2)V

+
∫
�

{j0
y (x, (u1 − u2)(x); (v1 − v2)(x))

+ g0
y(x, (u1 − u2)(x); (v1 − v2)(x))}dx

> λ1 (B1u1, v1)V + λ2 (B2u2, v2)V ,

for all v1, v2 ∈ V. One can assume that the graph[ξ, ∂j (ξ)+ ∂g(ξ)] is much more
regular than the graph[ξ, ∂j (ξ)]. Further one can assume that the graph[ξ, ∂j (ξ)+
∂g(ξ)] is monotone, a fact which in the framework of a numerical calculation is
beneficial. Moreover, in the monotone case one can consider the corresponding
variational inequality - eigenvalue problem and get some useful comparison results
(especially in the case of simple eigenvalue problems for which there exist certain
results for variational inequalities (see Le and Schmitt [7]).

5.2.2. Fuzzy effects superimposed on an adhesive contact law

Let us put ourselves in the framework of the previous example of adhesively con-
nected plates and let us consider the following interface law (see Panagiotopoulos
[22], p. 77)

−f (x) ∈ ∂j ([u](x))+ ∂g(u(x)), (22)

where∂g describes the fuzzy effects. We recall thatg results in the following
manner (see Rockafellar [25])

Let l be an open subset of the real lineR and letM be a measurable subset ofl
such that for every open and nonempty subsetI of l, mes(I ∩ (l−M)) is> 0. Let

r(u(x)) =
{ +b1 if u(x) ∈ M
−b2 if u(x) /∈ M

andg(u) = ∫ u0 r(u∗)du∗. Theng is Lipschitzian and

∂g(u) = [−b2, b1], ∀u(x) ∈ l.
Thus∂g(u(·)) has an infinite number of jumps inl where each jump is identified
with the interval[−b2, b1]. In the composite law (22), the zero of this interval
lies on the graph of[ξ, j (ξ)] and the zone[−b2, b1] around this graph describes
the fuzzy nature of the adhesive contact law. Note that existence results related to
fuzzy effects have been studied by Naniewicz and Panagiotopoulos in [14] p. 132.
Here we can apply our results to the perturbed problem(P 2

r,a,b), i.e. to the system
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related to the interface law (22). Our Lemma 2 shows that if the fuzzy effect tends to
disappear then the energy of the perturbed problem tends to the energy of the initial
nonfuzzy problem. On the other hand, by Theorem 1, the number of solutions of
the perturbed problem tends to infinity if the perturbation given by the fuzzy effect
tends to zero. We also remark that our results hold if the fuzzy effect is linked to a
subcritical growth, but is arbitrary, in the sense that it has no symmetry.
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